

The application of an electrostatic powder flow (EPF) sensor for the dynamic electrostatic charge measurement of pharmaceutical powders Hill-Izani, N.Y., Smith, G., Armitage. D.A., Polygalov, E. Pharmaceutical Technologies, School of Pharmacy, De Montfort University, Leicester LE1 9BH

INTRODUCTION

- Tribo-electrification results from electrostatic charge transfer due to collisions between particles and the process, which can lead to number of implications (shown below in • Fig. 1). Electrostatic charging is usually quantified using a simple Faraday Cup which produces only a single 'static' measurement (Pu, et al., 2007; Šupuk, et al., 2012), whereas tribo-electrification is a dynamic phenomenon influenced by flow rate and environmental conditions.
- In this study, a methodology was developed using an in-line electrostatic powder flow (EPF) sensor for the purpose of: a) identifying the dynamic intrinsic charge of different powders specific to a pharmaceutical process, and b) detecting the onset of tribo-electrification during processing.

<u>Outputs</u>

300

250

200 2

150 🗧

100 🗳

50

Fig. 1. The impact of tribo-electrification in relation to pharmaceutical processes.

Dual ring electrode EPF Sensor

MATERIALS & METHODS

- Electrostatic measurements were recorded for a) five common tableting excipients and one API, conveyed (as received) at 100rpm through a volumetric twin-screw feeder (T20. K-Tron) at ambient conditions.
- The Root-Mean-Square (RMS) of the electrostatic signal was normalised against the mass flow rate over a period of consistent flow to identify the process-specific intrinsic charge for that powder.
- b) The effects of material charging were demonstrated using Avicel PH102, dried for 24 hours at 100°C, then conveyed using the same operating parameters above.

Fig. 3. Schematic of screw feeder and EPF sensor setup.

	1	I	
50.15	50.20	50.25	50.30
	Time	(sec)	

Fig. 2. *EPF sensor measurement principle and signal outputs.*

Table 1. Mean normalised RMS against mass flow rate materials
 conveyed through the twin-screw feeder (n=3).

Material	Mean normalised RMS against mass flow rate (mV/g ⁻¹ s)	
Lactose 200M	160 ± 14%	
Avicel PH102	40 ± 6%	
Avicel PH101	30 ± 10%	
Maize Starch	16 ± 8%	
Lactose #316 Fast-Flo	5 ± 9%	
Compap-L	5 ± 11%	

- a) In Table 1, it is shown that lower charges were recorded for coarse materials (Lactose #316 Fast-Flo and Compap-L). Higher charges were recorded for materials with a smaller particle size (Lactose 200M, Avicel PH102 and 101).
- Potential for use as a pre-screening development tool for excipient selection, based off charging behaviour for relevant processes, e.g. blending (Šupuk, et al., 2012).
- b) Fig. 5 captures the onset of tribo-electrification of dried Avicel PH102 which resulted in bearding of the screw-feeder outlet (~30s), which was followed by a relaxation and equilibration in charge.

Bearding of outlet

Fig. 4. Normalised RMS and cumulative weight of Avicel PH102 "as received", conveyed at 100rpm through a twinscrew feeder, as a function of time.

Fig. 5. Normalised RMS and cumulative weight of dried Avicel PH102, conveyed at 100rpm through a twin-screw feeder, as a function of time.

CONCLUSIONS

- In this study, a methodology that could predict the intrinsic charging behaviour of individual materials and the onset of tribo-electrification using an EPF sensor was presented.
- It was hypothesised that the differences in intrinsic charging propensity may be given due to differences in material attributes (e.g. particle size, shape, chemistry, moisture content, etc.).
- Tribo-electrification of a material, which resulted in adhesion to equipment, was captured in the RMS signal.

REFERENCES

- Pu, et al., 2007. Effects of electrostatic charging on pharmaceutical powder blending homogeneity. J Pharm Sci. 98, 2412-2421.
- Šupuk, et al., 2012. Tribo-electrification of active pharmaceutical ingredients and excipients. PowderTech. 217, 427-434.

PHARMACEUTICAL TECHNOLOGIES

Leicester School of Pharmacy