Feasibility study on the in-line measurement of pharmaceutical powder mass flow rate and charging
characteristics using an electrostatic powder flow sensor (EPFS).
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Introduction Circular ring electrode pair q(t) dq
* Electrostatic induction sensors are widely used to measure in-line particle flow parameters in dt
pneumatic conveying processes [1], but are rarely utilised in pharmaceutical flow regimes. / é _
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differences are typically measured using tribo-series and Faraday Cup [3]. However, tribo-series only , /
gualitatively ranks charging behaviour specific to the conditions at which the measurements were v Voltage Current
performed, whereas the Faraday Cup cannot be integrated into processes. N\ |
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* In this study, an electrostatic powder flow sensor (EPFS) was developed to directly measure in-line
flow parameters and charging behaviour of powders conveyed in a pharmaceutical process. Fig. 1. Schematic and measurement principle of EPES.
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* RMS signal was calculated by averaging values across i of Op. Amp. Solid-state balance
consecutive 0.05s (20Hz) intervals over the entire electrostatic EPFS Induced charge ‘~\\
dataset. e _ _ _ Balance
records electrostatic and gravimetric
* Charging behaviour was analysed by normalising the RMS of data at 2 kHz and 20 Hz respectively. Fig. 3. Lean phase conveying system, (measurement
the electrostatic signal against the mass flow rate. Fig. 2. EPFS and measurement electronics principle of operation. electronics not shown).
Results Powder mass flow rate vs powder velocity Free/fair-flowing
Table 1. Mean particle velocities recorded for each screw conveyed powder. powders
Mean powder velocity (m/s)
Material 100 rpm 120 rpm 140 rpm 160 rpm All screw speeds h
Avicel PH102 1.68+0.02 | 1.69+0.02 1.7+0 1.69+0 1.69 £ 0.01 Free-flowing powders
Lactose #316 Fast Flo 1.76 £0.22 1.71+0.17 | 1.69+0.02 1.68 £ 0.01 1.71+0.04
Avicel PH101 17340 | 1.73+0.02 | 1.74+0.01 | 1.74+0.01 1.74 + 0.01
Lactose 200M 1.78+0.01 | 1.77+0.01 | 1.77+0.01 | 1.77 +0.01 1.77+0 Cohesive powders P—
Maize Starch 1.77+0 1.75+0.02 | 1.78+0.02 | 1.80+0.01 1.77 £ 0.02 Cohesive powders '
Table 2. Powder specific energy (SE), compressibility and permeability characterisation using an FT4 Powder Rheometer. h {v W
Material Mean SE (mJ/g) | % Compressibility @ 15 kPa| Pressure drop (mBar) @ 15 kpA ; 7 {
Lactose #316 Fast Flo 4.5+0.2 5.3+0.2 0.6+0 Free-flowing powders
Avicel PH102 5.2+ 0.5 11.3+0.2 0.4+0
Avicel PH101 7.2+0.2 15.7+0.2 1+0 * ;
Maize Starch 7.8+0.7 18.2+£0.7 3.8+ 0.07 Fig. 4. Powder deposition behaviour for a) Avicel PH102; b) Lactose #316
Lactose 200M 6.2+0.3 34.4+0.3 9.3+0.3 Cohesive powders Fast Flo; c) Avicel PH101, d) Lactose 200M and e) maize starch.
Powder mass flow rate vs RMS signal
Lactose #316 Fast Flo Lactose 200M Maize starch Avicel PH101 Avicel PH102
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Fig. 5. Mean powder mass flow rate and mean RMS signal correlation, recorded for five pharmaceutical powders conveyed using the twin screw feeder across a range of screw speeds.
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sINg Table 3. Ranking in the normalised charges recorded for five e Particle velocity was independent of the screw speed (Table 1).
50 500 pharmaceutical powders conveyed at 100rpm. . _ . o
[E a) * Differences in the particle velocities were thought to be
2 40 - 400 o influenced by powder deposition sizes (Fig. 4), which resulted
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o %20 | 500 > :C'tOSIePHlOZ 20 ; 207 2 * Similar rankings were shown between particle velocity and the
'Té = g Avfcel SH101 >3 ; 8‘; cohesivity dependant FT4 parameters (Table 2).
s 10- 100 O M\nc.:e S = 7(;  Reasonable correlation was shown (R2? > 0.88) between the mass
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