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Overview

e (Critical parameters in freezing

e On-line impedance spectroscopy (TVIS)

e Dielectric loss / dielectric relaxation processes (liquid to frozen)

e Dielectric loss or dielectric permittivity analysis?

e Dielectric permittivity spectrum: What frequency?

e |n-vial determination of ......
o lce solidification rate

o lce nucleation temperature (T,)

o Eutectic melting (T.,,) or glass transition temperature (Té)
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Critical Parameters

e |ce crystal structure (defined by freezing process and formulation)
o Dry layer resistance impacting primary drying rate
o Surface area of dry later impacting secondary drying rate

PRIMARY DRYING SECONDARY DRYING

faSt . ."Slow
desorption

Large ice
crystals...

B Scutella

Small ice
crystals...

..slow -fast

o High temperature nucleation and slow cooling favours larger crystals
o Low temperature nucleation and fast cooling favours smaller crystals
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Through Vial Impedance Spectroscopy MS.
iy

Single Vial PAT -3 Multichannel

=~
Non- perturbing to packing of vials Z\\} >

Thin flexible cables
(0.5-2m)

* Stoppering
unaffected

Temperature calibration
* using nearest neighbour vial(s)

Low thermal mass of
electrodes

* no interference with heat
transfer & drying rates

Non-sample invasive
e noimpact on ice nucleation
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Through Vial Impedance Spectroscopy (TVIS)

Dielectric Loss/Relaxation Mechanisms
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Dielectric Loss Mechanisms
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Dielectric Loss Mechanisms

Maxwell-Wagner (MW) polarization
of the glass wall of the TVIS vial at

+20 °C, with a dielectric loss peak &
frequency of 17.8 kHz :
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Dielectric Loss Mechanisms

4
Maxwell-Wagner (MW) polarization
of the glass wall of the TVIS vial at 3 1
+20 °C, with a dielectric loss peak & ,
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Dielectric Loss Mechanisms
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lll. The dielectric polarization of ice at Real part Capacitance
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Dielectric Loss Mechanisms

IV. The dielectric polarization of ice at
-40 °C with a dielectric loss peak 3

frequencies of 537 Hz. L
2
-~
M t vial © '
easurement via
Cs () !
| | Co
A\
R
S 0.8
+ +
Electronic
"B polarization * lonic defects 0.6
+ e e (similar to Grotthus mechanism)
=, L
+ - v @) + T F (o
s smggesnnieiaiann. 04
+- + ‘O’ g-".:; “OIV’ oQ’ I:>O’ o U :L)
M- Atomic + OO O WO A e e 0.2
+ . polarization . Yo B Bt
M RO ON 0.0
+P- +
+ B8 - +
lass wall Ice
2, DE MONTFORT
UNIVERSITY

%Y LEICESTER

Real part Capacitance

1 2 3 4 5 6 7 8 9 10 11 12

Log Frequency

Imaginary part Capacitance

537 Hz
-40 °C

------

1 2 3 4 5 6 7 8 9 10 11 12

Log Frequency

# DMU LyoGroup



Dielectric Loss Mechanisms

nns
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Further Reading wls,

Lyophilization of Pharmaceuticals and Biologicals pp 241-290 | Cite as

Through Vial Impedance Spectroscopy (TVIS): A Novel
Approach to Process Understanding for Freeze-Drying
Cycle Development

Authors Authors and affiliations

Geoff Smith 5], Evgeny Polygalov

e Introduction to TVIS theory
e Description of the measurement principles
e Dielectric loss and relaxations mechanisms (liquid and frozen states)
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Through Vial Impedance Spectroscopy (TVIS)

Dielectric loss or dielectric permittivity analysis?
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Applications for the dielectric loss spectrum T\_’!S |
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These concepts were used in our recent paper :

Smith, G., Jeeraruangrattana, Y., Ermolina, I. (2018). The application of dual-electrode through vial impedance
spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer
coefficient in lyophilization process development. European Journal of Pharmaceutics and Biopharmaceutics.
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Applications for dielectric permittivity spectrum

Multiplexing Through Vial Impedance Spectroscopy (

[ ] C’(N 100 kHZ) iS highly Sensitive to |OW : WithCompa(ativePres?ureMeasurerpen

for the Determination of the Primary Drying Endpoint of i

DE MONTFORT 51D 2019 - 9t International Symposium on Lyophilization of Pharmaceuticals, September 2-6, 2019, Ghent, Belgium
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- Introduction
° | 0 ate we ave een usin t at or AEiog 1060 b by e g Conbeatrcv sy can shiaotthe Uk o o il for logharacertealproduet e, ot
By the end of the primary drying stage, when all the ice is removed by sublimation, the shelf temperature is raised above the critical product temperature (T, or T,,) to allow
desorption of unfrozen water, termed secondary drying. However, if the shelf temperature is raised before all the ice is removed, it can lead to collapse or eutectic melt of the
- - - product. A precise determination of this primary drying endpoint has been one of the strategies for freeze-drying process control.!

The Pirani pressure sensor, which is more sensitive to the water vapour escaping from the vials, is used with a capacitance manometer (CM) that controls the absolute pressure
Single vial techniques (e.g. thermocouples, resistance temperature detectors, etc) are relatively less expensive and involve inserting some probe into the product to measure the
product it is known that p dry faster than the vials without the invasive probes.’
With Through Vial Impedance Spectroscopy (TVIS), wh‘(h Is a process analytical technology that senses the amount of ice in the vial by employing a pair of electrodes exterally

attached to a single vial (i.e, non-product invasive), it has been possible to ducrmmc the l‘ﬂdpoml of a sucrose formulation using the imaginary capacitance at 1 kHz.*
primary drying. ee Conference

The aim of this study is to develop an impedance-based methodology to determine the primary drying endpoint with the following objectives:
+ touse the time-line of the real capacitance at 100 kHz, ie. C'(100kHz) for a complex protein formulation located at the edge and the core of the batch

Poster 11 (Bhaskar et al)

* Abatch of 308 x 5 mL vials {Adelphi VC-005-20C) were filled with 3 g of 20 mM Histidine Buffer and 0.01%
) 4% 1gG with 5% of a 4:1

Tween 20 pH 6.5, containing either (i) 4% IgG with 5% sucrose;
mannitol ; o (i) their
« Two vials from (i) and twa vials from (i) were modified with copper electrodes (19 mm by 10 mm; copper
adhesive tape 1181 3M) attached externally to the glass wall at a distance of 3 mm from the vial baseline.
One TVIS vial from each IgG containing formulation were placed in the middle of the first row of the edge
vials facing the dryer door and the other two TVIS vials were placed in the core. Each TVIS vial was
twoType T laced in the immediate neighbour vials.

« Freeze drying was carried out at NIBSC in a Telstar Lyobeta 15 dryer equipped with Pirani and Baratron®
Capacitance Manometer pressure sensors and a 5-channel TVIS system (Sciospec, Germany).

The Iyo cycle consisted of a freezing ramp from 20 °C to -50 °C at 0.2 °C/min, two annealing steps (to -15 °C
and -28 °C}, followed by a 72 h primary drying step at a shelf temperature of -25 °C and finally a secondary
drying step at a shelf temperature of 30 °C. The total cycle time for the recipe was approx. 92 h Fig 1 Teltar Lyobeta 15 0ryer  Fig.2 Sciospec Five-Channel TVIS system

Results and Discussion

(i) Batch « Fig. 3(i) shows the time-lines of the Pirani and Baratron® sensors, the shelf temperature and the temperature
. ore recently we have started using = e T ey L
Rl o Fig. 3(ii) to (v} show the time-line of C'(100kHz) on the primary Y-axis for the TVIS vials containing the IgG-
Sio sucrose rich and the IgG-mannitol rich formulations that were at placed at the edge and the core, Note the
values of C'(100kHz) were averaged over 30 min from the lowest point {referred to as the dip in the time-line)
1o the end of the plateau is shown as black dotted lines. The first derivative of this rolling average, ie.
d(C'100kHz)/dt, is shown on the secondary Y-axis for each case.
Pure ice experiments (unpublished data) have shown that the magnitude of C'(100kHz) decreases as the
height of the ice cylinder in intimate contact with the glass wall bounded by the electrodes decreases planar
to the vial base. Photographs of the sublimation front of pure ice in an edge vial during primary drying have
shown that the point at which C'(100kHz) reaches its characteristic “dip” is when the ice block has
transformed from a cylinder into an ice dome with its diameter approximately equal to that of the vial base.
As the sublimation proceeds, C'(100kHz then starts to recover as it continues to sense the ice dome which
gradually retracts towards the centre of the vial base. Finally, the point at which all the ice has sublimed
corresponds to the point when C'(100kHz) has recovered fully and has reached a plateau, called the TVIS
endpoint.

| ce cr Stal I i1z atl on en d -DOI nt o
O (i) 4% IgG-4:1 c (v) 4% 1gG-4:1 it C'(100kHz) is sensitive to the amount of ice in the TVIS vial regardless of other components of the frozen

Prossure/ mbar

Baratron
at ot

he dielectric permittivity spectrum for {ammm—dh

—+

I
Edge TVIS Vials "7 coroTvis visls
(1) 4%igG-S%sucrose () 4% 1G-5% Sucrose

o lce nucleation temperatures -

2 [

)

matrix and the vial location. The profile of d(C'100kHz)/dt which changes much more during the recovery

. oss & ; compared 1o the point when C'(100kHz) reaches 3 plateau, could then be used as an indicator of the
- 43 3@ sublimation endpoint
( ; I aSS tran S I tl 0 n 3 uE 3 / + The TVIS endpoint for the sucrose-IgG edge vial occurred 12 h earlier than the onset of the reduction in the
O S a2f d Pirani vapour pressure (44 h). In addition, the TVIS endpoint for both core TVIS vials occurred at 62 h and yet
os§ ¥ o the Pirani was still active until 73 h. This may be due to one or both of two factars: (i other core vials were
o 2 % 60 0w o 2w

o 0o sl o ke iepeshurtl ko gty o
emperature.................. 'he focus e sl S e e
-

tamporature and produst temperature from the thermocou
time-lines of TVIS parameter, C(100kHz) and the derwative of its roling

for the rest of the presentation”

TVIS could be used In conjunction with batch measurement sensors to further the understanding of the hold and cold spots of the shelf
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Through Vial Impedance Spectroscopy (TVIS)

Dielectric Permittivity Spectrum: What frequency?
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Applications for dielectric permittivity spectrum D!!S

e Temperature sensitivity of the real part capacitance (dielectric storage or
dielectric permittivity) of the TVIS vial (containing ice) depends on the
measurement frequency

e The low frequency capacitance is strongly temperature dependent
e The high frequency capacitance is weakly temperature dependent
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1.5 N b ° b
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Significance: Optimization of ice crystal structures with
larger interconnected crystals increases the porosity of the
dry layer, which is the layer that is restricting the

dif fusion of water vapour from the ice interface

TVIS Applications

Ice solidification rate
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Nucleation onset

[ Ice nucleation

} ____________

The capacitance of ice at
frequencies below the relaxation
frequency of ice (e.g. 10 Hz) is
strongly dependent on
temperature

Any changes in C' @ 10 Hz,
either with time or temperature,
can be associated with the onset
of ice nucleation (which is an
exothermic event)
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Ice formation end point

The capacitance of ice has almost
no temperature dependence at
frequencies above the relaxation
frequency of ice (~1 kHz) such as
C'(0.2 MHz).

Any changes in C' (0.2 MHz)
either with time or temperature,
can be associated with the
completion of ice formation on
freezing

[ Ice solidification end-point }

C'(10 Hz)/pF

C'(0.2 MHz)/pF
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Ice crystallization period

nns
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Average solidification rate (Ryy,) =

solidification time At
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IgG in
Mannitol and
Sucrose based

Examples (Edge Vials)

IgG in Sucrose
based

5%Sucrose in
0.55% NacCl

5%Sucrose

formulation

formulation
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TVIS Applications

Determination of Ice Nucleation Temperature (T;,)

DE MONTFORT

@*QEE'SYEERS'TY * DMU LyoGroup .,



Ice Nucleation Temperature

Thermocouple Freezing step
{

a
TVIS vial TC yial

L
|

TVIS record every 120 seconds

j 30 ~ >

| 20 - I(Z”d spectrum start after 1st
\\ ! spectrum 10 seconds)

__J
/)

Temperature / °C
AR
o

TC at the middle of solution 50 Shelf Temperattire
bounded within electrode region ' ' ' '

(defined as Temperature node) 1.0 1.5 2.0 2.5 3.0
Time /h

Thermocouple position Freezing from 20 °C to -45 °C with 0.5 °C/min
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Ice Nucleation Temperature

e |n case the TVIS vial nucleates before Thermocouple
TC vial, the nucleation temperature
in the TVIS vial can be inferred
directly from TC temperatures in the
nearest neighbor vials

Shelf Temperature

(8 ey 85 DMU LyoGroup
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Ice Nucleation Temperature

In case the TVIS vial nucleates before
TC vial, the nucleation temperature
in the TVIS vial can be inferred
directly from TC temperatures in the
nearest neighbor vials

However, if TVIS vial nucleates later
than TC vial, the nucleation
temperature can be predicted by
fitting a curve to the plot of the
average temperature from
thermocouple vials against TVIS
parameter (i.e. C'(10 Hz))

The ice nucleation temperature of
sample (5 %w/v sucrose) was found
to be -10.5 C in the case of this
particular TVIS vial (other vials will
differ owing to the stochastic nature
of ice formation.

14 DE MONTFORT
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Conclusions : Ice formation stage

e |ce nucleation onset (t,)

o determined at low frequency (e.g. 100 Hz)

Ice solidification end point (ty)
o determined at high frequency (e.g. 100 kHz)

e |ce solidification time (At) is the difference between t; and t,
e Average ice growth rate determined by

Ice height (L)

Average solidification rate (R =
4 / (Rav) solidification time At

e Nucleation temperature (T;,)

o determined from extrapolation of pre-nucleation data
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New Book

Chapter 5 Through Vial Impedance Spectroscopy (TVIS) A New Method for
Determining the Ice Nucleation Temperature and the Solidification End point

CRC Press
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Through-Vial Impedance Spectroscopy (TVIS): A New Approach
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The developmant of a rabust fracze-drying product and processes nocessitates
an understanding of the in-vial characteristics during processing especially freezing stage.
The majority of techniques up to date for determining ice nucleation are restricted to the
of-ine instrument. Through-vial impedance spectroscopy (TVIS) is a relatively new
technique which could explore the different facets of the in-situ material behaviour under
freezing process. (i.e. ice nucleation to solidification end points); however, an TVIS
applications for the determination Ice nuclealion process have been recently restricted to
the low-conductivty solutions such as pure water [1]
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In this study, other features of TVIS system were explored to develop & new
approach for delermining nucleation process of conductive samples. a0

EQUIPMENTS
Instrument / Sensor  Measuremant | Process
nce of TVIS
¥ Z min during
Thenmocauple ter

Thermocauple
jagh==10 1S vial (calioration

VirTis Advantage Plus

010 -46"C at 0.5 °C-min-'

3. Fraszing sample

Phaolographic image for abservalion of ice nuclealion

RESULTS & DISCUSSIONS

i e e

fie

3 4 5o

Fog Praguency

5. dentifying TVIS parameters
using LyoView software

==

4. Monitoring nucleation event

 Inflections in the time profies of TVIS parameters [Cfeac, Frege 800 C(10HZ)]
comesponded with the onset of ice nueleation of 5% sucrose (as confirmed by images)
as demonstrate in Fig 1b - 1e. o~ —

» However, samples having the higher conductivity (5% sucrose with either 0.26% or 1 N
0.55% NaCl), the relaxation process before frozen could nol be delected by TVIS 5 | Steiftempemtiee- .
system (Fig 1i = 1j and Fig 1p = 1q, for 0.26% and 0.55% NaCl respectively). This
could be exemplified by the spectrum of liquid stale of sugar-salls solution (Fig 1n &

Fig 1u) and pure sugar {Fig 1g). Hence, only real part capacilance al 10 Hz was used
ta indicate the onset of ice formation in a high conductive solution (Fig 1k & 1r),
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Temocousle e TVIS vial generally nucleate later than TC vial due 1o
the impact of thermocouple probe. In this case, the
nucleation termperature can be predicied by fiting a
curve to the plat of temperature fram neighbaring vial
(TC wvial) against TVIS parameter [ie. £'(10Hz)] as
demonstrated in Fig 2c, which are ~10.5, ~11.0 and
=115 °C respectively for the solutions of 5% sucrose
with 0, 0.26 and 0.55% NaCl (Fig 3) __

Fig.3 Mucleation femperalure  of
sugar-salt soluilons predicted by TVIS
parameler C"(10Hz)

CrauieF

it zoF

HaiisF

Log rgaeecy _, 2
Fig.1 TVIS parameters of 5% sucrose soltion with oifferent salt concentrations and|
images during fraezing; (a-g) 0% NaCl, (h-n) 0.26% NaCl, (o-u) 0.55% MaCl

REFERENCE

[1] Smith, G., Polygs

= AL200 kHz or 0.2MHz (which is well above the ice relaxation freguency of 1 kHz), the
capacitance of ice has almost no temperature dependence and so any changes. in
£(0.2MHz) either with time or temperature, can be assaciated with the complation of ice

ie)

0,0.26 and 0 55% NaGlwere 227, 217 and 2 43 h, respectivaly.

By using the time diferent batween nucleation point (Fig 4a) and solidification end point
{Fig 4b], ice forming duration was obtained. The results were reported in Fig 5, and
also demonstrated a twofold increase in the solidification time as salt concentration
increases from 0 to 0,55 %
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Fig.4 Determination of nucleation
period of 5% sucrose by TVIS

formation on freazing (Fig db). Here, the and point of solidification for 5% sucrose with [}

CONCLUSION

TVIS creates a new opportunities to detect phase change during freezing process
including the nuclaation onset and the solidification end point.
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Significance: Tg’ or T, underpins/defines the collapse temperature which in
turn defines the highest permissible product temperature during primary
drying and therefore impacts the maximal achievable drying rate

TVIS Applications

Determination of in-vial

Eutectic melting (T,,) or
Glass Transition temperature (T,)
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PAT for critical temperature determinationT_, T, T,

* Collapse temperature (defined by formulation and related to T, T,)

o Maximal permissible temperature avoiding structural changes to the product

eu’

Lyotherm - integrated electrical Impedance (Zsind) and DTA
designed to measure glass transition (Tg’), eutectic (Teu) and melting (Tm)

Impedance and DTA

temperatures relevant to freeze-drying fc

Electrical Impedance Z (kOhms) .
Delta-T (°C) (exo up) .

+3.0

Ward & Matejtschuk , 2010 in Freeze Drying/ Lyophilization of Pharmaceutical & Biological Products 3™
ed. Rey,L & May JC eds, Informa Press, New York
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Glass Transition Temperature
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IgG formulations : melt back vs glass transition :: NIBSC
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Conclusions concerning real part capacitance spectrum

e Low frequency dielectric properties of ice
o Pronounced temperature dependency
o Determination of the onset of ice formation
o (and time point when excess thermal energy has dissipated from the system — use in
defining start of annealing phase)
e High frequency dielectric properties of ice
o Negligible temperature dependency
o Determination of end point of ice crystallization
o Mono-tonic changes with product temperature reflect changes in viscosity.

o Discontinuity with product temperature reflect phase changes in the unfrozen
fraction. Exploit in a study of the glass transition and/or eutectic melt of the unfrozen
fraction.

Onset and end point of ice crystallization gives rate of ice formation (dm/dt)

e Pre-nucleation data (MW relaxation) predicts the nucleation temperature (T},)
e dm/dt and T,, (+ soln visc.) control the size distribution of ice crystals and R,.
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Mannitol crystallization & melt back
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Through Vial Impedance Spectroscopy (TVIS) determination of ice nucleation, growth and
crystallization of mannitol during lyophilisation

International Society for Lyophilisation and Freeze-Drying (ISL-FD) 9% International Conference, Ghent, Belgium 2-6% sept 2019

S

1. INTRODUCTION

= Mannitol improves mechanical strength of lyophilised product
cake and thereby presents with elegant cake structure.

= Primary drying of mannitol-containing formulation must be
performed below its critical temperature to avoid melt-back
which would result to increase in primary drying time.

=  Previous study {Kett et al. 2003} performed offline using DSC,
C5M,and XRD showed mannitol crystallises and melts at -30 *C.

=  Online study during actual freeze-drying process may be required
to ascertain this behavior in a continuous freeze drying condition,

= TVIS measures material charges across a vial rather than within
the vial. It may be used to perform both invasive and online
measurement of aqueous frozen mannitol,

AIM: To demonstrate the use of TVIS for online study of thermal

transition events including ice growth, crystallization and melting-back

of mannitol in aqueous sclution during lyophilization process
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3. RESULTS
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addition,
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Real part capacitance shows respense due to ice sglidification from its onset to the
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Lower frequencies are temperature dependent
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Fig.3 shows crystallization of mannitol. The black dotted line in fig.3 at
252 h sits on the point of crystallization where system experience
exotherm. Temperature at this point was -32 °C.

The change in gradient with time/ temperature after the end of
solidification and before crystallization point supports the idea of TVIS
response to events due to unfrozen fraction.

Mannitol crystallization set in at 2.52 h evidenced by a step down in
capacitance just 40 min from ice formation onset as shown in fig.3.
Fig.4 shows TVIS response to the phase behavior of mannitol during
re-heating process.

Melting onset was detected in high frequency at -32 °C, but both the
low and high frequencies agreed to the melt-back endpeint at -26 °C.
Dielectric property of the TYIS vial and contents at 10 Hz is temp.
dependent, the frequency is good for demenstrating the changes in
temperature during freezing.

But the dielectric properties at 0.2 MHz are dominated by the
properties of the solution and insensitive to ice temperatures, hence
good for determining the end of ice formation,

Duration between the onset of ice growth and the solidification end-
point is 20 min while the ice growth onset temperature is - 13 °C.

4. CONCLUSIONS
TVIS has demonstrated ability as an efficient non-invasive and real

time PAT tool for determination of ice growth, crystallization and
melting back of mannitol in aqueous sclution during lyophilization.

5. SIGNIFICANCE

In process development, freezing characteristics of materials are
important as it impact process outcome
Prediction of freeze drying parameters at the early stage of the
process can inform decision making for production

This investigation employed TVIS system to confirm thermal
transformation events of mannitol in sub-ambient condition
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