The Application of Through Vial Impedance Spectroscopy (TVIS) for Optimization Freeze-Drying Process DE MONTFORT UNIVERSITY **Yowwares Jeeraruangrattana and Bhaskar Pandya** Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University

Supervisors: Professor Geoff Smith and Dr Irina Ermolina

"Non-invasive, real time lyophilisation process monitoring would increase process understanding and accelerate development of stabilized biopharmaceutical formulations at room temperature."

TVIS TECHNOLOGY

- In-line monitoring system for the freeze drying process consisting of:
- Freeze-drying vial with external electrodes
- Pass through for cabling
- External Impedance spectrometer.

TVIS Technology

TVIS ADVANTAGE

1. Non-invasive, real time full cycle lyophilisation monitoring including :

- Cooling rate, Freezing and Annealing
- Primary and Secondary Drying end point
- 2. Optimization of the primary drying process by:
 - Heat Transfer Coefficient (K_v) Determination
 - o Dried Product Resistance (R_P) Determination
- 3. Can be applied in standard freeze dryers
- 4. Integrated, bench top, single vial, TVIS enabled analytical

freeze dryer

TVIS APPLICATIONS

HEAT TRANSFER COEFFICIENT (K_v) DETERMINATION

- The product temperature ($T_{PRODUCT}$) derived by *TVIS* is one of the parameters needed for K_V determination
- Sublimation rate or drying rate (dm/dt) is estimated by *TVIS*
 - -10 Applying vacuum

Figure 1. TVIS Technology

TVIS TECHNOLOGY PRINCIPLE

Process analytical technology based on impedance spectroscopy

- Electrical impedance determines the ability of materials to conduct electricity under an applied voltage.
- Impedance is a function of dielectric and conductive properties and therefore the physical state of vial and its contents.
- Principal parameter effecting measured impedance is resistance/conductivity of sample within the vial.
- Changes in electrical parameters mirror the condition of the sample throughout the lyophilisation process.
- The capacitance spectrum is related to *the* resistance/ conductivity and capacitance of the vial contents.
- Data viewing software (LyoView TM) identifies the peak frequency (F_{PEAK}) and the peak amplitude (C''_{PEAK}) in the imaginary part of the capacitance spectrum
- \circ F_{PEAK} can be used to monitor phase behaviour (ice formation, glass transitions) and product temperature
- $\circ C''_{PEAK}$ can be used to monitor the amount of ice remaining during primary drying, from which

DRIED PRODUCT RESISTANCE (R_P) DETERMINATION

• C''_{PEAK} from *TVIS* is proportional to the amount of ice; therefore it is estimated for drying rate (dm/dt) • Partial pressure of ice (P_{ICE}) and condenser ($P_{CONDENSER}$) calculated from temperature of ice (T_{ICE}) and condenser (T_{CONDENSER}) by using Clausius- Clapeyron derived equation

the drying rate and the end point may be determined.

References

1. BRÜLLS, M. and RASMUSON, A. (2002) Heat transfer in vial lyophilization. International Journal of Pharmaceutics, 246 (1-2), pp. 1-16.

2. GIESELER, H., KRAMER, T. and PIKAL, M.J. (2007) Use of manometric temperature measurement (MTM) and SMARTTM freeze dryer technology for development of an optimized freeze-drying cycle. Journal of Pharmaceutical Sciences, 96 (12), pp. 3402-3418.

3. JOHNSON, R.E. et al. (2010) Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations. Journal of Pharmaceutical Sciences, 99 (6), pp. 2863-2873.

4. LEWIS, L.M. (2010) Characterizing the Freeze-Drying Behavior of Model Protein Formulations. Aaps Pharmscitech, 11 (4), pp. 1580-1590.

5. SMITH, G., POLYGALOV, E. and PAGE, T. (2011) Electrical Monitoring of a Lyophilization Process. GB2480299 (A)

6. TANG, X.C., NAIL, S.L. and PIKAL, M.J. (2005) Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer. Pharmaceutical Research, 22 (4), pp. 685-700